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KNN matting

"KNN Matting", Chen, Li, and Tang. TPAMI, vol.

35, no. 9, September 2013.

I nonlocal principle

I k nearest neighbors in the feature space for matching

I works well with click inputs (more convenient than
scribbles)



KNN matting

I Code available

http://dingzeyu.li/projects/knn/

The compositing equation

I =
n∑

i=1

αiFi ,
n∑

i=1

αi = 1 .

http://dingzeyu.li/projects/knn/


Nonlocal principle for alpha matting

I Assumption: a denoised pixel i is a weighted sum of the
pixels with similar appearace to the weights given by a
kernel functon K (i , j)

E [X (i)] ≈
∑
j

X (j)K (i , j)
1

Di

K (i , j) = exp

(
− 1

h2
1

‖X (i)− X (j)‖2g −
1

h2
2

d2

ij

)
,

Di =
∑
j

K (i , j) .

X (i) is a feature vector computed using the information at
pixel i , and dij is the pixel distance between pixels i and j .



Expected value of alpha matte

E [αi ] =
∑
j

αjK (i , j)
1

Di

or
Diαi ≈ K (i , ·)Tα

α is the vector of all α values over the input image.

1. the nonlocal principle applies to α

2. the conditional distribution α given X is
E [αi |X (i) = X (j)] = αj the pixels having the same
appearance are expected to share the same alpha value

3. replacing the local color-line assumption



Clustering Laplacian

Dα ≈ Aα

A = [K (i , j)] is an N × N a�nity matrix
D = diag(Di) is an N × N diagonal matrix
N is the total number of pixels

(D − A)α ≈ 0

αTLcα ≈ 0

Lc = (D − A)T (D − A)

The corresponding quadratic minimization problem

min
α

∑
Aij(αi − αj)

2



Computing A using KNN

Collecting nonlocal neighborhoods j of a pixel i before their
feature vectors X (·) are matched using K (i , j).

I Existing e�cient package for computing KNN: FLANN

Feature vector X with spatial coordinates

X (i) = (cos(h), sin(h), s, v , x , y)i

h, s, v are the HSV coordinates and x , y are the spatial
coordinates of pixel i

Kernel function

K (i , j) = 1− ‖X (i)− X (j)‖
C

favors soft segmentation (cf.e−x)



Closed-form solution
The Laplacian L = D − A is sparser than the clustering
Laplacian Lc = (D − A)T (D − A).

With user input, extracting n ≥ 2 layers

(L + λD)
n∑
i

αi = λm

m is a binary vector of indices of all the marked-up pixels and
D = diag(m).
Closed-form solution:

g(x) = xTLx + λ
∑

i∈m−v

x2i + λ
∑
i∈v

(xi − 1)2

v is a binary vector of pixel indices corresponding to user
markups for a given layer



Derivation of closed form solution

g(x) = xTLx + λ
∑

i∈m−v

x2i + λ
∑
i∈v

x2i − 2λvTx + λ|v|

= xTLx + λ
∑
i∈m

x2i − 2λvTx + λ|v|

=
1

2
xT2(L + λD)x − 2λvTx + λ|v|

=
1

2
xTHx − cTx + λ|v| .

Let
∂g

∂x
= Hx − c = 0.

The optimal solution:

x = H−1c = (L + λD)−1(λv) .



Video matting

"Motion-Aware KNN Laplacian for Video Matting",

Li, Chen, and Tang. ICCV 2013.

I Key idea: producing spatio-temporally coherent pixel
clusters of moving pixels

I Pixels sharing Similar appearance and similar motion
should have similar α

I How to de�ne the feature vector Xt(i) at pixel i in frame
t?



Feature Vector X

Xt(i) = (λs(x , y) λf (uf , vf , ub, vb) P(i , λp))t

(x , y) are spatial coordinates of pixel i .
(uf , vf ) and (ub, vb) are the forward and backward motion
vectors.
P(i , s) is an RGB image patch of size s centered at i



Asymmetric two-frame a�nity matrix A

A =

[
A11 A12

A21 A22

]
2N×2N

A11 and A22 are intra-frame a�nity matrices.
A12 and A21 are inter-frame a�nity matrices.



Alpha constraints

Using αt as soft constraints to optimize αt+1

Avoiding trimap propagation

m = mf + mb,mf =

[
vf

0

]
,mb =

[
vb

0

]
vb and vf are N × 1 indication vectors
0 is an N × 1 zero vector for αt+1



Energy function

g(x) = xTLx + λ

[∑
i∈mb

x2i +
∑
i∈mf

(1− xi)
2

]

= xTLx + λ

[∑
i∈m

x2i − 2mT
f x + |mf |

]
= xT (L + λD)x − 2λmT

f x + λ|mf |

x =

[
αt

αt+1

]
,D = diag(m)



Solution

∂g

∂x
= 2(L + λD)x − 2λmT

f = 0

x = (L + λD)−1(λmf )

After solving the linear system, we obtain αt+1 and the re�ned
αt .

Solved in Matlab using the biconjugate gradients stabilized
method bicgstab



Further information

Evaluation website
http://www.alphamatting.com/index.html

Tutorial
http://www.alphamatting.com/ICCV2013_tutorial/

http://www.alphamatting.com/index.html
http://www.alphamatting.com/ICCV2013_tutorial/


Sampling based matting

"Optimized Color Sampling for Robust Matting",

Wang and Cohen. CVPR 2007.

"Image Matting with Local and Nonlocal Smooth

Priors", Chen et al. CVPR 2013.

"Improving Image Matting Using Comprehensive

Sampling Sets", Shahrian et al. CVPR 2013.



Color sampling [Wang and Cohen, CVPR 2007]

I Recall

α̃ =
(C − Bj)(Fi − Bj)

‖Fi − Bj‖2

I Failure cases



Con�dence [Wang and Cohen, CVPR 2007]

I Distance ratio

Rd(Fi ,Bj) =
‖C − (α̃Fi + (1− α̃)Bj‖

‖Fi − Bj‖

I Weights

w(Fi) = exp{−‖Fi − C‖2/min
i ′

(‖Fi ′ − C‖)}

w(Bj) = exp{−‖Bj − C‖2/min
j ′

(‖Bj ′ − C‖)}

I Con�dence value

f (Fi ,Bj) = exp
{
−Rd(Fi ,Bj)

2 · w(Fi) · w(Bj)/σ
2
}



Local and nonlocal smooth priors [Chen et al., CVPR 2013]

I Data terms

W(i ,F ) = γα̃ , W(i ,B) = γ(1− α̃)

I Local smooth term (i and j in a 3× 3 window wk

W lap
ij = η

(i ,j)∈wk∑
k

1 + (Ci − µk)(Σk + εI/9)−1(Cj − µk)

9

I Nonlocal smooth term
N∑
i=1

‖Xi −
K∑

m=1

W lle
imXim‖2 , subject to

K∑
m=1

W lle
im = 1 .

Xi = (ri , gi , bi , xi , yi)



LNSP optimization [Chen et al., CVPR 2013]

I Energy function

E = λ
∑
i∈S

(αi − gi)
2 +

N∑
i=1

(∑
j∈Ni

Wij(αi − αj)

)2

Wij represents three kinds of weights, W
lap
ij , W lle

ij , and W(i ,F )

and W(i ,B).

E = (α− G )TΛ(α− G ) + αTLTLα

Lij =


Wii , if i = j ,
−Wij , if i and j are neighbors ,
0, otherwise .

I Closed-form solution

(Λ + LTL)α = ΛG
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